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v 1. Introduction.

Suppose that F has an IFR (increasing failure rate) distribution

with mean u, second moment Hos stationary renewal distribution

" G(t) = u-l f;lﬁ(x)dx, and p = 1-(u2/2u2). Consider a renewal process EE
with interarrival time distribution F, and define M(t) to be the E;:ié

expected number of renewals in [0,t], including a renewal at time zero. :75;

Marshall and Proschan (1972) showed that for F NBUE (new better i;?i

than used in expectation, a weaker property than IFR): :;-ﬂ

(1.1) M(t) _5 +1.

In section 2 it is shown that for F IFR:

R
._ 4
3 2 o
3 (1.3) M(e) > L4 5,
. u 2 s
. u A
—
- s
. Thus for F IFR, (1.1) and (1.2) combine to give the two sided bound: e
¢ o’ t T
4 (1.3) T IM@E) <=4+ 1.,

L u 1
o
For F non-lattice with finite second moment H(t)-tu-l-(u2/2uz) .
converges to 0 as t -+ » (Feller (1971) p. 366), and thus tu-1+(u2/2u2) _' )
; serves as an asymptotic linear approximation to M(t). Defining ;jj}

o L(t) = M(t)-tu-l-(uzlzuz), the error of approximation at t, it follows E;
from (1.3) that for F IFR: ;_f?
. 2 s
. . J
. 1
e e S AT e e L N L T I e
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(1.5) sup|L(t)| = p = L(0)
t

" s e g T T
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Thus p equals the exact sup norm error for the asymptotic linear
r R

b - : approximation.

The parameter p was suggested by Keilson (1975) as a measure of -

departure of a distribution from an exponential distribution with the

—— r“v

same mean. Inequality (1.5) demonstrates that in the IFR case p measures
Ei a characteristic of the departure of the renewal process with distribution ;-7ﬁ
F from that of a Poisson process with the same mean interarrival time.

. - Results are also obtained for the approximate exponentiality of

J
h
IFR distributions with small p. For probability distributions Fl’ FZ .._i

on [0,~) define D(Fl’FZ) = suplFl(t)-Fz(t)|, and

*
D (Fl’FZ) = supIFl(B)-FZ(B)l, the sup taken overall Borel subsets of

[0,2). Define aE to be an exponential distribution with mean a. In ;iﬂ

section 3 the following inequalities are derived:

(1.6) D(F,uE) < 2 I

(1.7) D*(F,G) < 2p

- . .!

* T

(1.8) D (G,uE) <o :ﬁ{

3 0
..’ -‘:.:
X o
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L
E » Thus for F IFR with small p, F and G are approximately -73:
% equal and approximately exponential. s
?E Brown and Ge (1984) showed that for F IFRA (increasing failure 2;;;
Lj rate on the average) the best bound for D(F,uE) of the form cp% has A

{ a ?'% and 1 < c¢ < 4:3 . Thus (1.5) cannot be extended from IFR to

IFRA. However, (1.5) does extend to the class of absolutely continuous

distributions which are simultaneously IFRA and DMRIL. (decreasing mean
residual life). I don't know whether or not (1.5) holds for the class iiii

S
of DMRL distributiomns.

Finally it is shown that for F IFR: ‘ S

yrsT PO A ) - v v v -
. P St ',‘ e
ek,

[

- 4

— -cu‘1+2p ‘;i-_j;:

(1.10) F(t) < e for t >0 . o
.A-'- '.‘

This result combines with an inequality of Barlow and Proschan ((1975) ::73

p. 113) to yield: E'i:

4 [HESIRR

-1 -1 =

(1.11) e TFWw <™ P for 0<t <. ~
]

=

The methodology of this paper overlaps with that of Brown (1980) and “zq
(1983). However, I have found the IFR class to be more difficult to T
penetrate than DFR for the properties of interest. In some cases no close ;
analogue ‘'of the DFR result holds, in others the IFR analogue is weaker. ffq
-

Increasing failure rate distributions on [0,») are absolutely

continuous except perhaps for an atom at the right hand endpoint of the ffg:

support. The atom leads to uninteresting technicalities and in this paper v
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< 2 we ignore them by assuming the IFR distributions to be absolutely continuous.

All the above results are for atomless IFR distributions. However, 1

E believe that they hold in the general case. The method of proof would :fﬁf
i be to replace the atom at the right hand endpoint, b, by a uniform dis- IO
. tribution on [b-g,b] with the same mass as the atom, and let € + 0. The -f

resulting distributions are absolutely continuous IFR distributions which

k converge to the original. Then continuity arguments are needed to show L

IR
. o P

that the corresponding functionals converge. This line of argument is

ek

not pursued here.

Increasing failure rate distribuitons have been widely studied. Some -

AR DO
-I' . ' .
e :

notable references are Barlow, Marshall and Proschan (1963), Barlow and

i Marshall (1964a,b), Barlow and Proschan (1964), and Barlow (1965). A 1lucid
discussion of the subject can be found in Barlow and Proschan (1975). ;;i;
Bounds on the renewal function have been investigated in the general case

by Lorden (1970), Stone (1972) and Daley (1976), (1978) and for reliability
¥

" . ‘ classes by Brown (1980) and Marshall and Proschan (1972). ’ e
i : T
2. Renewal Function Inequalities. itiﬂ

. A distribution on [0,») 1is defined to be IFR (Barlow and Proschan {j'*

(1975) p. 54) 1if the residual life is stochastically decreasing in ¢ Ti?j
i.e. F(t+s)/F(t) is decreasing in t for each s > 0. IFR distribu-

tions can have support [0,») in which case they are absolutely continuous,

ettty
DTN
. P .
R PR
[ S DAL S VY

or support [a,b] with 0 < a <b < = in which case they are absolutely °

p. 77). As mentioned in the introduction, we will assume without further ;75}

continuous except perhaps for an atom at b (Barlow and Proschan (1975)

* it

= RN .o.‘.-
3.0% LD INLIN




R LT E TR A N d¥a st ar SN S - ar Tl SRIA L Sl ST auih A R Ar i ar Ak R R G ATR T at i Sl aril el b s il il ot el S SIL A R T LT ot ot

s RV T

2’ mention that the IFR distributions have no atom, and thus are absolutely

- continuous. The IFR property is equivalent to H(t) = -1nF(t) convex, Sl

.
-y -
PR B P
A s
: PR

and to h(t) = H(t) = f(t)/F(t) increasing, where h is the failure

. rate funccion (Barlow and Proschan (1975) p. 54).

We will refer at times to classés defined by weaker aging properties
than IFR. The class IFRA (increasing failure rate on the average) is
characterized by H starshaped, i.e. H(t)/t increasing, a weaker
property than H convex; DMRL (decreasing mean residual life) distri-
butions have E(X-t|X>t) decreasing, a weaker property than X-t|X>t

stochastically decreasing; NBU (new better than used) distributions have

R
4 }.},3I. K
G b

X-t|X>t stochastically smaller than X for all t > 0, and NBUE (new better
than used in expectation) distributions satisfy E(X—t|X> t) < EX for all t > O.

All the above classes are discussed in Barlow and Proschan (1975).

N\ AN AN 4
v

Lemma 2.1 below rephrases and simplifies Lemma 3.3 of Brown (1980):

P T W S Y

Lemma 2.1, Assume that F1 and F2 are probability distributions on ’ y

i . the real line with f&(t)ffz(t) increasing in t. Then there exists

B R

(xl,xz) with X, ~ F;, X, v Fy, X, > X, a.s. and: .}:
. . . F(t") S
» (2.2) D (F,,F,) =sup|F (B)-F,(B)| <Pr(X,>X,)) <1 - | == dF. (t)
- 1’72 1 2 - 1 727 - - 1 -9
--. B . . Fl(t ) N 11
) i
}; Proof. Define Fé(t) = fz(t)lfi(t) and note that fi(—w) =1, Fé is f:i
h : decreasing and right continuous and 0 j_fi(t) <1 for all t; Fi is R
{

thus the survival function of a possibly improper random variable. Con-

b struct X1 and Z 1independent with X1 y" Fl’ Zn FZ and define
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N ,
PV~ «
E" _ ‘..-j"':‘
B > X2 = min(xl,z), noting that Pr(X2> t) = Fz(t), thus X2 " l~2. For
g any Borel set B: =
i |F1(B)-I~‘2(B)| = |Pr(XleB,xl#Xz)-Pr(xzeB,Xl#XZ)[ g
< max(Pr(xlsB,xl#xz),Pr(xzeB,Xl#Xz)) 1
]
4 F,(t) o
< Pr(X,>X,) = Pr(Z<X,) =1 - dr._(t) .
— 1772 1 = .- 1
. Fl(t ) ]
f =
; Theorem 2.3. Suppose that F 1is IFR and that G 1is the stationary N ’
g renewal distribution corresponding to F. Then there exists (xl,xz) .‘
S ,
- with X1 v, Xy v G, Xy > X, a.s. and:
[ e
i * 02 -
¢ (2.4) D (F,6) < Pr(X;>X,) <1 -"5=2 -]
3 Y T
- T
} ¢ IR
a 2 _ - Y2 _ 2 . R
i where El._.x, g = VarFX, o] 1 _2u2 » Hy T EFX . " T
g ¢ _ :P”‘:.*_‘
‘ uG(t) o
X Proof. F IFR implies E(X-t|X> t) = —— decreasing. Thus Lemma 2.1 S
I F(t) T
: is applicable with Fl = F and F2 = G. This gives:
3 * : J
3 - -
* — R
,’ (2.5) D (F,G) <1~ J G(t)h(t)dt R
; »
» where h 1s the failure rate function of F. ~ ,j
Integration by parts in (2.5) produces:
" ',:j
L . '.J
' * 1 - v
(2.6) D (F,G) <1- o where I = | F(t)H(t)dt —
: s
E - o
» 7 .'j‘f:
p ]
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- t
» and H(t) = -1nF(t) = fo h(x)dx. L
Noting that xH differentiates to xh+H, we have: e
Sets
REEA
X - e
2.7 EXH(X) = E J (xh+H)dx = I (xh+H)Fdx = u + I . R
0

Next, noting that EH(X) = 1, define probability measures P and

Q by:

—— e
St
v
e 4.

¢ P(A) = J HAF; Q(A) = [5 dF .

! A I ¥

}

; -
,‘ The ratio of the Radon-Nikodym derivitives of P and Q with respect KR
-

to F is uH(x)/x which is increasing since F 1is IFR and H convex

PY—

and thus starshaped. Therefore P 1is bigger than Q under the partial

ordering of monotone likelihood ratio (Lehmann (1959) p. 74) and thus has R

a bigger mean. Thus ﬁ;f

4 Lot

. ._-...‘.

. - 4
(2.8) EXH(X) = EX > E = IPYATRR o

From (2.7) and (2.8) we conclude:

(2.9) I> oz/u .

. 1.21

The result now follows from (2.6) and (2.9). D

We now construct {N(t),N*(t),t > 0} where {N(t),t > 0}, is dis-
tributed as an ordinary renewal process with interarrival time distribution

*
F(IFR) and (N (t),t > 0} distributed as the stationary renewal process

et ~- e s, o L alte e e e .o e e e e
LU PRSI L P T I U VR A e e RN PR N A
- VYu - EREC . - A

\J »
. . 1""&._‘:._ .............

.
.
- - - - v -, . »
LY L] - o » “ 3 N . . . . e e e e . ., - . » *a'e @t et s T 4"
I A W R A AP e A A A R T ARSI AL AL T T T L . .




T M e T T T T . T W T g TV T T hd

AR A IS iSO I ISR SN PSSP S T AR - A Sl Atn i du IR S I e dere e &

corresponding to N. The construction is similar to Brown (1980) p. 230. ;;;;
The process N starts with a renewal at time 0. Its next renewal occurs

* CAS
at X, v F while the first renewal for the process N occurs at Y, ~ G. N

1

By Theorem 2.3 we can construct (Xl,Yl) with X1 z.Yl. 1f Xl = Y1 L

then we construct all future renewal epochs identical for the two processes.

Y

*
if Xl > Yl’ then at time Y process N has its next interarrival time,

1

Tz-Yl'bF while process N has a forward recurrence time at Y1 distri- :'

A

buted as Xl-Y1]X1>‘Y Since F is IFR, for any t:

1

F(x)
F(t+x) /F(t)

4
(2.10) is increasing in x . . ‘1

It follows from (2.10) and Theorem 2.3 that we can construct
(TZ-Yl,Xl—Yl) and thus (T2,X1) with Xl j.Tz a-ss. If Xl = T2
*
we make :ill future renewal epochs identical for N and N , otherwise

%
we cont .:ue the construction. We wind up with processes N and N, N A
v LR

* A :
having rer _.als at O,Xl,Sz,S3,... N at Yl’TZ’TB"' with renewal il
* .
epochs alternating between N and N until a random event epoch where »f
both processes have a common renewal (called the coupling time) at which N
time they share all future event epochs. Thus a typical realization may ';
look like: _1
‘-1
0 < Y1 = T1 < xl = Sl < T2 < S2 < r3 < S3 = |4 . g
R
in which case S, =T, , for k > 3. :
* S
Note that under the above comstruction N(t)-N (t) starts at 1, ]
S 4
alternates between 1 and 0, and either identically equals 0 or 1 ~—
9 - : q
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1‘

> from the coupling time to =, In the atomless case it is easy to show
that with probability one N and N* eventually do have a common renewal
epoch. With the above construction we can now derive the renewal results.
Define M(t) to be the expected number of renewals, including a
renewal at zero, for a renewal process with IFR interarrival time distri-

bution F.

Theorem 2.11. For F IFR, the following inequalities hold:

2
t g t
(2.12) ;+:§'iM(t)i‘;+1
-1 2
(2.13) o < (o) = M-t e qy2n?) <o
(2.14) sup|L(t)[ = p = L(0)

*
Proof. By our observation that under the above construction N(t)-N (t)

can only equal 0 or 1:
t *
M(c)-;-= Pr(N(t)-N (t)=1)

*
1f X1 = Y1 then N(t)-N (t) = 1, for all t. From Theorem (2.3),

2
Pr(Xl=Yl) under the construction is at least ozlu . Thus

2
t g
(2.15) M) -2 PrOgY) 2 5

Thus (2,12) follows from (2.15) and the Marshall-Proschan inequality

for NBUE distributions mentioned in the introduction. Inequality (2.13)

10
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> follows from (2.12) by subtracting tu_1+(u2/2u2) from all 3 sides of
the inequality. Finally (2.14) follows from (2.13) and the observation
that L(0) = p. []

Analogues of the results of Brown (1980) for renewal theory for DFR

interarrival times do not hold in the IFR case. An example of Berman
E (1978) p. 429 shows that F IFR does not imply an increasing renewal }' ]
t density function, nor M(t)-u-lt decreasing, nor the expected forward :;;i‘
! recurrence time decreasing. The identity (2.14) holds for F IFR (increas- "
T ing mean residual life) with F(0) = 0, as follows from Brown (1980), .
Theorem 2. ;ﬂ;;;
- ' 1
3. Exponential Approximations. :
Theorem (2.3) bounds the distance between F, an IFR distribution, i;:%i
and G its stationary renewal distribution. This bound is the key to : R

obtaining approximate exponentiality for F under small op.

Theorem 3.1, Suppose that F 1is IFR with mean uy, second moment Moo | !

p = 1-(u2/2u2), and G(t) = u_l IS F(x)dx. Then:

(3.2) D (F,C) < 2 ,
o
*
(3.3) D (G,uE) < p s
~ )
(3.4) . D(F,uE) < 20 52.;
‘ (3.5) D(G,ugE) <o - e

e . e et AT At at ety PP
-------

. Pt et e e e g DA
L A A A A, 'JN-I&.'.-A.




S ERENME SO AT AN AN SN S AN PP I et AL A S S e oA gl el S e A~ (S ak v SV e R ROl S e AL e etk SUEL N ok M et ek aosh e —

Proof. Bound (3.2) is the conclusion of Theorem 2.3. Inequality (3.3) ;:;
follows from Brown (1983) remark 4.14, as F 1is IFR and therefore NBUE.
Since G 1s stochastically smaller than both F and uf, it follows ;;{{
that D(F,uE) < max(D(F,G),D(G,uE)) < 2p by (3.2) and (3.3), thus i;;
(3.4) is true. Finally uE is stochastically larger than both G and
uGE, and D(uE,uGE) <p by Lemma 2.1, thus D(C,uGE):3max(D(C,uE),D(uGE,uE)) :
<o.[] s

Inequality (3.2) 1s sharp in that 2p is the best possible upper bound K
for D*(F,G) of the form cpa. This can be seen by letting F be a one
point distribution at 1 in which case p = %- and D*(F,G) =1, F can be :ifa
approximated by a uniform distribution on [1l-¢,1], which is IFR and
absolutely continuous; as ¢ -+ 0, p » %- and D*(F,G) -+ 1. In this example, &;i;
D(F,uk) = l—e-l, thus the maximum potential improvement of inequality (3.4) ;;:
is from 20 to 2(1—e-1)p % 1.26p. In Brown and Ge (1984) I reported that
20 was the best possible bound of the form co®, but the example I based !;gf;
that on contained a numerical error. The sharpness of (3.4) is still an ‘ ;;:
open question.

Finally we prove the following inequality for F IFR:

_ -1 e
(3.5) F(t) < e ¥ 20 T

This combines with a bound of Barlow and Proschan (1975). p. 113 to hR

give the following twotsided bound:

~tu L

- -1
(3.6) e < F(t) < e tH 2

for 0<t<wy. T

12 N
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o e e,
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» The proof of (3.5) now follows. Consider N a renewal process with —
interarrival time F, and R a non-homogeneous Poisson process with
intensity function h (the failure rate of F). For F NBU (new
better than used) N(O,t] is trivially stochastically smaller than -

R(0,t] for all t. Thus:
(3.7) M(t)-1 = EN(O,t] < ER(O,t] = H(t) .

As a consequence of (3.7) and (2.12):

t+20

(3.8) F(t) - e-H(t) < e-(M(t)—l) < e-;

4, Comments and Additions.

(4.1) A key ingredient of this paper is inequality (2.9). Following the

same approach tte following correlation inequality can be derived. Let .

K(x) be starshaped and X a non-negative random variable. Then: - .
o, /u

(4.2) PLLK()) 2 g — .
K(X)" "K(X)

Thus the correlation between X and K(X) is bounded below by the

ratio of coefficients of variation.

(4.3) Theorems 2.3 and 3.1 hold for absolutely continuous distributions
which are simultaneously IFRA and DMRL, a slightly more general class than
IFR. The DMRL condition appears essential, but perhaps the results hold

without assuming that H is starshaped (and thus F is IFRA). What ;f

« .._.. -
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would be needed to extend the results to the class DMRL is a proof of

(2.8) assuming only that F is DMRL.

(4.4) Define 2(t) to be the forward recurrence time at t for a
renewal process with IFR interarrival time distribution. An immediate
consequence of (2.12), using Wald's identity is:

2
(4.5) o—u-iEZ(t) < .

14
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